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I. INTRODUCTION

For many years it has been observed that liquid-filled projectiles have a
proclivity for unusual flight behavior, often being unstable even though the
same projectile with a solid payload is stable. The history of various
aspects of this area of ballistics, summaries and critiques of previous
theoretical work and a discussion of experimental techniques are given in
References 1 and 2. The distinction between the steady state and spin-up
problems is basic. 1'2  Only the steady state problem for an incompressible
fluid in a cylinder is considered here; therefore, the undisturbed basic flow
is solid body rotation. In principle, the same techniques could be used for
the spin-up problem.

To put this work in perspective, it is helpful to distinguish betweenanalytical and finite difference approaches (see References 1 and 2). So far,

analytical approaches have been confined to linearized problems. Most of these
are asymptotic for Re + =; the case Re + 0 was considered by Sedney (unpub-
lished, see Reference 1 for a summary). The Reynolds number, Re, is defined
below. Herbert 3 analyzed experimental data at "low Re" and constructed a
model for an infinite cylinder from which he deduced results for 1 < Re < 104.

His results for roll moment agree with experiment. In principle, the analyti-
cal approach used in this work is valid for all Re; it is "exact" in the sense
that the accuracy of the results can be improved by adding more eigenfunctions
in the expansion. In practice, treating large Re, say Re > 1,000, becomes
tedious using the techniques presented here.

An outline of the process in going from the Navier-Stokes equations to
the linear partial differential equations and the boundary conditions is given
now; the details are in Reference 4.

1. The Navier-Stokes equations are written in an inertial reference frame
using cylindrical polar coordinates (r,e,x) with corresponding velocity
components (u,v,w); an inertial frame is used even though there is an
advantage to using an aeroballistic reference frame in that the boundary
conditions are easier to apply (see Reference 1).

2. To obtain boundary conditions, the motion of the cylinder walls is deter-
mined from the projectile motion which is proportional to exp i(ft-e) where t
is time and f is, in general, the non-dimensional complex frequency of the
projectile motion; for convenience, f is taken to be real here, so that f = T,

the non-dimensional coning frequency for pure coning motion.

3. The angle of the coning motion, K0, is assumed small and only linear

departures from solid body rotation are considered. The velocity components
are then (-K0 u*, r -Ko v*, -Ko w*) and pressure is 1/2 r2 - Ko p*. The *

denotes perturbation.

4. The motion of the cylinder is specified and the response of the fluid
determined; no feedback from the fluid to the projectile is allowed.

-5. It is convenient to introduce complex velocities and pressure, denoted by
sub and defined by

y, 1
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(u*,v*,w*,p*) = Reall(u,v,w,p) exp i(ft-ie) (1.1)

where the azimuthal wave number, m, is an integer (±) but only m = 1 is needed
for the linear forced motion problem.

The resulting linearized, non-dimensional Navier-Stokes equations are:

i(f-m) u-2v -p + Re - [V2u - M 2 + 1 u + 2 im v]rr 2  r 2

_1 M2 + 1 2 im
i (f-m) v + 2u (im/r) p + Re [V2v v - u]

v - r2 r2

(f-m) w -p + Re- [v2w -
m-- w]

x _ r2

(ru) r- im v + rwx = 0 , (1.2a,b,c,d)

where V2 = a2 + (1/r) ar + ax2 is the Laplacian and subscripts denote

partial derivatives. The non-dimensional variables are defined after (2.1).

From (1.2) and appropriate boundary conditions, the eigenvalue and forced
motion problems are defined in Section II. Particular solutions of the par-
tial differential equations which simplify application of boundary conditions
are also introduced there, and finally, the eigenfunction expansion of the
solution. The latter is the basis of the spatial eiyenvalue method which was
used by Blennerhasset and Hall 5 in their study of the Taylor vortex problem
for finite length cylinders.

ietnods for solving the eigenvalue problen are discussed in Section
Ill. Obtaining the eigenvalues is central to the method and is a nontrivial
problem. The complex eigenvalues are defined by a 6th order complex system of
ordinary differential equations which is not self-adjoint and are computed by
an iterative process. Sufficiently accurate initial estimates, or first
guesses, are required for the iteration process to converge; these are ob-
tained using asymptotic approximations for Re + 0 and Re + w, variation on the
axisynmetric Taylor problem for Re not too large, or extrapolation. Addition-
ally, an algorithm wds developed to compute an initial estimate from a
previous eigenvalue by a trivial arithmetic operation. Once the eigenvalues
and eigenfunctions are known, the coefficients in the expansion must be com-
puted; collocation and least squares methods are used.

Formulas for pressure and moment coefficients are presented and discussed
in Section IV. Asynptotic forms for the pressure coefficient for f + 0 and
f + are also given.

2
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Results are presented in Section V. Although the velocities and pressure
are available in the output, they are usually not extracted. Instead, the
variation of pressure and moment coefficients with Re, f or aspect ratio are
shown since these are the items of primary interest. Some comparisons are
made with results from experiments. Several comparisons are also made with
results from the finite difference method of Strikwerda, 6 as computed by
Nusca. 7 Rather limited comparisons are made with results from other numerical
methods.

Because of the emphasis given results from the Strikwerda 6 method in
Section V, it is apropos to consider some features of it. Since it solves the
nonlinear Navier-Stokes equations, it can handle large Ko; and it computes

both the roll and side moment coefficients. At present, it has been applied
to Re < 100, Reference 7. CPU time on the VAX 8600 is of the order of hours,

increasing with Re. For example, if Re = 10, f = 0.05, and aspect ratio
(length/diameter) of the cylinder is 3.0, it is 1.1 hours.

The spatial eigenvalue method is in the class of spectral methods; it is
applied here only to the linear problem (extension to the nonlinear case is
underway). Thus, Ko must be small in some sense. Although the spatial

eigenvalues method was intended originally for application to the "small" Re
range, say Re < 100, which is the range emphasized in this report, in princi-

ple it can be applied to any Re; actually only Re < 1000 has been considered.

The CPU time on the VAX 8600 is of the order of minutes, increasing with Re;
for Re = 10, f = 0.05 and aspect ratio = 3.0, it is 10 seconds if 6 eigen-
values are used (with a maximum of 4 iterations) and 30 seconds if 15 eigen-
values are used (with a maximum of 8 iterations). The side moment coefficients
computed with 6 or 15 eigenvalues differ by 0.15% for this case. For Re = 1000
and f = 0.1, the CPU time is approximately 30 minutes.

II. FORMULATION OF THE PROBLEM

Consider the flow of a viscous fluid of kinematic viscosity v and den-
sity p in a circular cylinder of radius a and length 2c. The aspect ratio is
A --c/a. The undisturbed fluid is assumed to be in rigid body rotation with
angular velocity i, as observed in an aeroballistic reference frame, S'; see
Reference 6, e.g. With respect to the inertial reference frame, S, used here

the angular velocity is j + r cos K0 , about the x-axis, where is the

dimensional coning frequency; it is used to define the Reynolds number

Re = (Q + T cos K ) a2/v . (2.1)
0

In S' the non-dimensional coning frequency is T' = T/ and the Reynolds number
is Re' = Q a 2/v. For reference, in S the non-dimensional coning frequency is
f = = T'/(I + T' cos K0 ) and Re = Re'/(l - T cos K0 ). Using the assumption

already introduced, Ko << 1, cos Ko is replaced by unity in the above and the

following. The typical time, length, velocity, and pressure scales used to

non-aimensionalize the flow variables are (, + T)_, a, (Q + T)a and

3
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As for any oscillatory system two problems are defined: the free oscil- "

lation or eigenvalue problem and the forced oscillation problem here called
the moment problem. For the eigenvalue problem, the complex perturbation
velocities and pressure in (1.1) are written

(u,v,w,p) = U(r) sin Kx, V(r) sin Kx, W(r) cos Kx, P(r) sin Kx . (2.2)

From (1.2) the radial variations (U,V,W,P) satisfy

2!

[Re- (a - r - iM] U + 2 [1 + (im/r 2 Re)] V - Pr 0
Ir

1 2 im P
[Re- (A - r - iM] V - 2[1 + (im/r2 Re)] U + i 0

1 r

[Re A -iM] W -KP= 0
II

(rU)r- imV - KrW = 0 . (2.3a,b,c,d)

where M = f - m,

e..

and - + m 2 + K 2

rr r r r 2

See also Reference 8 for these equations in a different context. The above
equations must be solved subject to the no-slip condition at r = 1, U = V = W
= 0, together with the appropriate boundary conditions at r 0, which depend
on m and can be written

U dW 0 m 0dr

U iv W = P : 0, m = I

U V = W = 0, m > 1. (2.4a,b,c)

For a discussion of the origin of these boundary conditions, see Batchelor and

Gill 9 and Reference 4. The system (2.3), the no-slip condition at r = I and
one of (2.4) constitute an eigenvalue problem for K = K(m,Re,f). Since the
problem is defined on a finite interval, it is expected that the spectrum will
be infinite and discrete. If neutral disturbances were possible, then K would,

4,



of course, be real. The numerical solution of the eigenvalue problem is dis-

cussed in the next section; here it is assumed that an infinite sequence of
eigenvalues {Kn } exists and can be ordered in some sensible manner.

For the moment problem, it can be shown that only m = I is required. The

pivot point for the coning motion is midway along the axis of the cylinder
(L = 0 in the notation of Reference 4). The boundary conditions at r = I and
x = iA for (uv,w) were derived in Reference 4; they are

u -i (I - f) x

v -( - f) x

w i (I- f) r . (2.5a,b,c)

It is convenient at this stage to transfer che inhonogeneous boundary condi-
tions to the endwalls by subtracting out a suitable particular solution to the
perturbed Navier-Stokes equations. Let

u = -i [1 - f] x + u (r,x)

v= -[i - f] x + v (r,x)

w = i [1 - f] r + 0(r) + w (r,x)

-[I - f2] rx + p (r,x)

Jl(xr)
a(r) = 2if Lr - ] (2.6a ,b ,c ,d e)

where Jl is the Bessel function of the first kind and order 1 and
112

= (1 + i) [(1 - f) Re/2] I/ 2. The boundary conditions at r 0,1 and x =A
in terms of (u,v,w,p) become

u -iv w p 0, r = 0

u = v w = O, r 1

u = v = 0, w = -(r) x A (2.7a,b,c)

5
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and the differential equations satisfied by (u,v,w,p) are (1.2) with m = 1:

i [f - 1] u - 2v = -pr + I v2u  2u + 2iv
r Re r2  r2

i [f- 1] v + 2u =1.2. + -L V2v , L i-
r Re r2  r2

i [f -1] w= -P +±. V2 W -
Re r 2  .

(ru) - iv + rw = 0 (2.8a,b,c,d)r X "

Assuming that (u,v,p) = (U(r), V(r), P(r)) sin Kx and w = W(r) cos Kx, it
follows that U,V,W,P satisfy (2.3) with m = 1; the odd and even variations
with x follow from (2.5) and (2.6). Let the infinite sequence of eigenvalues,
{K 1, with m = 1 be denoted by {kn I and the eigenfunctions by un, vn, wn,

Pn" The solution of (2.8) is expressed as an eigenfunction expansion:

an sin kn x 00 an sin knx
U Un (r) ,  v = Vn (r),

n = sin k A n = 1 sin k A

w ncos knX sin k x
s A n n = s k p n(r) . (2.9a,b,c,d)

n 1 si n = 1 sin k A

Discussions of how {kn) can be sensibly ordered and how the as yet undeter-

mined constants {an I can be found, by applying the endwall boundary condi-

tions, are given in the next section.

I1. CALCULATION OF THE EIGENVALUES AND SERIES COEFFICIENTS

Tne first step in the calculations is to find {k n} and {un ,v n,W ,p n, the

eigenvalues and eigenfunctions of (2.3) with m = 1, subject to

u n = n = 0, r =0,i r
U = v = Wn 0, r =1. (3.1a,b)
n n n..

6i



Two independent methods were used to generate the eigenvalues; since both
iterative methods are well documented elsewhere, only a brief description of
them is given.

Firstly, the complete orthonormalization procedure of Davey, 1 0 as
implemented by Kitchens, Gerber, and Sedney 11 was employed. The numerical
integration was carried out using a fourth order Runge-Kutta scheme. Secondly,
the compact finite difference scheme of Malik, Chuang, and Houssaini 12 was
used. In both methods the singularity in the equations at r = 0 was removed
by transferring the boundary conditions to r = e with 0 < c << I and using the

. Taylor series solution given in Reference 11. The methods gave consistent
results. The complete orthonormalization method was more efficient at
Reynolds number of order 102. At higher Reynolds numbers where some of the
eigenfunctions begin to vary rapidly, the finite difference method was found
to be the more efficient method.

With both methods a sufficiently accurate guess for kn was required if

the iterations were to converge. This was a hindrance initially since little
previous knowledge of the distribution of these eigenvalues was available; in
certain cases it was necessary to calculate a large number of the sequence
{kn 1. To obtain first guesses techniques were developed to determine approxi-

mations to the eigenvalue distribution in certain special limits, and if
necessary, follow their evolution into the required regime.

1. A RELATED TAYLOR VORTEX PROBLEM.

Firstly, previous knowledge of the eigenvalue distribution for the
classical Taylor vortex problem was used (see Reference 5). Consider a basic
flow driven by the rotation of the cylinder r = e while the outer cylinder is
held fixed. No-slip boundary conditions are applied at r = c and at r = 1.
The frequency, f, and azimuthal wave numbers, m, are now set to zero; at
sufficiently small supercritical Reynolds numbers the resulting eigenvalue
distribution is as sketched in Figure 1. The two real wave numbers k, and k2

correspond to the two neutrally stable perturbations which exist in this
regime. In addition, there are the following three sets of eigenvalues:

(1) A pure imaginary set {k3 n) ,  n = 1,2,...

(2) A complex set of eigenvalues {k3 n+21 , n = 1,2,...

with k3n+2 k 3n+1,

(3) A complex set of eigenvalues k3n+1 , n = 1,2,...

being in the first quadrant with real part ~ i.

The eigenvalues kI and k2 can be associated with (3) and (2), respectively,

and at subcritical Reynolds numbers move into the complex plane with kI = 2

7
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At higher Reynolds numbers pairs of eigenvalues (k3n+l, k3n+2) merge on the

real axis and then move along the real axis. Blennerhasset and Hall 5 found
that the eigenvalues {k3n+1, k3n+2, k3n+3 ) for n = 0,1,2, have azimuthal

velocity eigenfunctions with n zeros in (,l). Thus, in the axisynmetric
problem, there is a rational method of ordering the eigenvalues, in triplets.
If m or f is now taken to be nonzero, the symmetry of the eigenvalue distri-
bution described above is broken but the ordering from the axisymmetric steady
Taylor vortex problem can be retained while:

a. f and m are gradually increased from zero to their required values. .

b. The basic flow is gradually varied from that appropriate to the
Taylor problem to rigid body rotation. .,

c. The boundary conditions at r = E are gradually varied from no-slip to
those given by the Taylor series expansion of Reference 11.

It was found that it was not necessary to perform a, b, and c independ-
ently and that having found a set of eigenvalues {k } for some f and Re, other

n
sets could be generated by varying f and/or Re slowly, i.e., by extrapolation.
However, at values of Re greater than about 100, the eigenvalues (2) and (3)
were found to be very sensitive to changes in Re and it proved rather ineffi-
cient to calculate them by this method. For large Re an asymptotic approach
was used, described below. Another asymptotic approach, for small Re, is
necessary and outlined next.

2. Re + 0.

For values of Re < 10, approximately, estimates for the eigenvalues can be

found by solving the Re + 0 problem, i.e., the Stokes limit. Essentially, the
same procedure is used as for the classical Stokes flow solution but Re + 0 is
a regular perturbation for the internal flow under consideration. In addition
to the momentum and continuity equations, (2.8), a derived equation is used.
The linearized Navier-Stokes momentum equations, in vector form with velocity
vector q* = (u*,v*,w*), see (1.1), can be written

i(f - 1) q* + 2 (i x q*) = -grad p* - (i/Re) curl w*

where u* is vorticity and i is the unit vector in the x direction. Usingx

div q* = div curl w* 0 and the definitions (1.1) yields

r [v2 p - p/r 2] = 2 [iu + (rv)] . (3.2)

.5

Next, the scaled pressure P : Re is introduced and it is convenient to -

change variables u -.nd v to U = u + iv and V = u - iv. A regular perturbation
series

8 1
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(U,V,w,P) : (U., V., w, P.) Rej
j=o0~

is substituted into (2.8), (3.2), and (2.7) and the latter is expanded in a
power series in Re. The result is

V p. + F./r

V2 Vj -(4/r 2) Vj = Pr - /r

v2 Wj- (1/r2) W = P jx

U. + Vj + (2/r) V. + 2 wjx 0Ujr r jx.'N

V2 pj - (1/r2) P. = 0 . (3.3a,b,c,d,e)

Using the expanded boundary conditions (2.7), the trivial solution is
obtained for the 0(i) terms. The O(Re) solution is determined from

homogeneous and non-homogeneous solutions of (3.3), with respect to PI.
Expressing the 0(Re) terms as a modal decomposition, as in (2.2),

(U1,VlWI,PI) = Fn(r) sin XnX, Gn(r) sin XnX, Hn(r) cos XnX, fn(r) sin XnX

the eigenfunctions are found to be I

_- ?a...
Fn [r J 0(An) d1 (Anr) - d1 (An) Jo (Anr)]/Jo (An)

n  [r J 2 (An) J1 (Anr) " Jl (An) J2 (Anr)]/J 2 (An) S

H i[r J (AJO (A r) Or]
)1 n J n J 0 (An) J1 (Anr)]/Ji (An)

I1n = 2 Jl (Anr) (3.4a,b,c,d)

where An  ixn , are the roots of

n J 0 - 2 An J J 2 " 2 Jo J1 J2 = 0. (3.5)

9,'
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Obviously, the x do not depend on any of the parameters of the problem; the
n

first several xn are shown in Figure 2, indicated by kn since X 1Rn kn"
n n Re.On

These eigenvalues separate into three branches or sets:

(1) a set which is pure imaginary,

(2) a set in the fourth quadrant, and

(3) a set which is conjugate to (2).

As an alternate notation for the X's or k's, let the eigenvalues be
denoted by A where X = 1,2,3 is the branch and n = 1,2,... is the index1,n

along a branch. If Jo,n and J2,n are the n-th zeroes of Jo and J2,
respectively,

1,n ~ o,n+2 +  )/2

for n >> 1. This asynptotic estimate is quite accurate for n > 1. From

this x1,n+1 - 1,n ci . Atually, the eigenvalues for finite Re satisfy

Im (k - k ) ± ,, + for 1 = 1,3 and - for t = 2, for all x and Re if
x,n+l t.,n

n > n (Re). The relationship no(Re) is only known empirically. An algorithm
0

for obtaining a first guess for k is:£.,n

For given X, Real k , n is obtained by extrapolating Real k ,n_ 2 and

Real kx,n-1 , and Im (kL,n- k Lnl) = i 1T for n > no.

The k were computed up to Re = 100, starting from the X , by slowly
£,n ,n

increasing Re and using the algorithm. Relatively large increments in Re
could be used for L = 1, but the process became tedious for t = 2,3. Results
for Re = 100, f = 0.1, and n < 5 are shown in Figure 2. The first eigenvalue

on each branch and k3 , 2 are labeled. Note the separation of k3 , 2 and k3 , I . It

increases monotonically with Re; jk 3 , 2 - k3 ,11/IX3, 2 - 3,1 is 1.56 for Re =

10 and 4.62 for Re = 100, both for f = 0.1. The ordering of the k, isa.,n
determined by the numbier of zeroes of the eigenfunctions: n zeroes corre-
sponding to kJn and n - I zeroes corresponding to k2 ,n or k3,n. This

orderin, is consistent witn the analytical results obtained in the Stokes

limit.

10
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In calculating the flow variables, the k ~ must be taken in groups of

three: j = 1,2,3 for n = 1, n = 2, etc. Departure from this ordering
introduces errors; the error depends mainly on the degree of departure, n and
on the method used to calculate an"

A more efficient method of estimating k2,n and k3,n for large Re was

needed and for this purpose an asymptotic approximation was derived.

3. Re+-

An asynptotic solution to (2.3), with m = 1 and K = k, can be found by
expanding the disturbance field and wave numbers in the form

k c 0 + KI + "'" +

1
u u0 +- u +

v o+-v I  .
V0  Re 1

1 1
w = W0 + W +

-Re Re3 / 2

p PO + - p + .... (3.6a,b,c,d,e)
Re Re 2

The zeroth order approximation to (2.3a,b) then yields

2
{. 2- if + i} U0 + 2v0 

= 0

2 f + ij V0 - = 0 (3.7a,b)
0u

and the consistency of (3.7a,b) requires that either

22 " (I + f)i

0

or

2
0 = (3 - f)i , (3.8a,b)

11



where Real i0 > 0 is required so that (3.8a) and (3.8b) correspond to branches

2 and 3, respectively. A spectrum is not obtained in this approximation to k.

Corresponding to (3.8a), the zeroth approximation to (2.3c,d) yields

PO = -2iw 0/o

w0 =U -C/o. (3.9a,b)

where ' = d/dr; u0 is obtained as follows.

The next order approximation to (2.3a,b) yields a pair of inhomogeneous
linear equations for u1, vI. The operators in the homogeneous parts of these

equations are identical to those in the l.h.s. of (3.7); thus, the inhomogene-
ous terms must satisfy a solvability condition, which, for K0 from (3.8a),
reduces to

u0 + (1/r) u + D2 u0 = 0 (3.10)

where D2 = -2K 0K, (1+f)/(2+f) and the required solution is

u0 = J0(Dr).

The o0 from (3.8b) leads to

uO + (1/r) u6 + (B2r2 - 4) uo/r2 = 0, (3.11)

where B32 = -2 0K1 (3-f)/(4-f) and the required solution is

u0  = J2 (Br). (3.12)
-SS

The boundary condition uo(1) = 0 determines Ki for each branch; their values,

corresponding to (3.8a,b,) are given by
p

K1= - [0 /4 (1+i)(2+f) j2 / (+f)3/2
0O, s,.

ad=2 3/f)3 1 2

and i ( -/4)(1-i)(4-f) j2,s (3-f) (3.13a,b)

12



respectively, s = 1,2,... Thus (3.6a), using (3.8a) and (3.13a) or (3.8b)
and (3.13b), approximates the eigenvalues on branches 2 and 3, respectively,

correct to O(Re-1 /2 ). From (3.9b) and the boundary condition wo(1) = 0, a

boundary layer of thickness O(Re "1 /2) must be introduced at r = 1 but this

does not affect K, given by (3.13). Further asymptotic anproximations to the

eigenvalues will be reported in a separate publication.

Consider a numerical example: Re = 1,000, f = 0.1 and branch 3. The

first term of (3.6a), with (3.8b), gives U,000 KO = 38.0789 (1+i) while

the first two terms, using (3.8b) and (3.13b) with s 1, give an approxi-
mation 37.8460 + i 38.3117. Using these as first guesses in the eigenvalue
iteration routine, the iteration process diverged for the former but converged
for the latter, even if rounded to 2 decimal places. The converged value is
37.8471 + i 38.3196. The iteration process also converged using guesses
obtained from the first two terms of (3.6a) and (3.13) with s = 2 and 3 but
not with s = 4. If the third term in (3.6a) is also included, but the
boundary layer at r = 1 neglected, the iteration process converges for s < 5.

Although the first term in (3.6a) does not provide a first guess which
converges to an eigenvalue, it can be used to obtain a "differential correc-
tion" to an eigenvalue. In fact, an extrapolation of the eigenvalue for Re1 ,

fl to Re2, f2 can be derived from the first term in (3.6a) which is second

order correct in ARe = Re2 - Re1  and Af = f2 - fl" For branch 2, the

increment in k is

61 k =L1111+ f (I-i )12 1_2 ..Re [ARe + Re 0Af/(1+f0)]

and for branch 3

Ak 3 [ 3f 0 (1+i)/2 -/- [ARe - Re0 &f/(3-fo)

where Re0 and fo are the average values of Re2 , Re1 , and f2 , fl, respectively.

Having calculated just three eigenvalues along each of the branches 2 and
3, the first guess for the next one was obtained using the asymptotic approxi-
mation and extrapolation in n. For larger n, the algorithm stated previously
was used. Although the asymptotic method for Re + w described here does not
give approximations for branch 1, those eigenvalues can be obtained rather
easily by extrapolation fromi Re = 100. In Fiyure 3, the converged
ei~envalies, k , are presented for Re = 1,000, f = 0.1, 1,2,3 and
n < 24.

13
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4. CALCULATION OF n"

Reverting to the first notation for the eigenvalues, assume that {kn are

known for 1 < n < 3M, where M is a positive integer. Truncating the series in

(2.9) at n = 3M, the coefficients {an } , 1 < n < 3M, were determined by either

of two ways. The first is collocation. Let {rj}, 1 < j < M, be a sequence of
points such that " "

0 < r, < r2 ... < rM < 1.

Enforcing the boundary conditions (2.7) at the points r1, ... , rM leads to

3M
El (r) - % un (r.) 0

n= 1

3M
E2  (rj) - n Vn (rj) = 0

n=i

3M
E3 (r (an cot k nA) wn (r.) + o(r) = 0 . (3.14a,b,c)

n1

These 3M1 linear equations are solved for the coefficients l, "' .3M The
success of the method requires that the flow properties converge in some sense
as M increases. Experience has shown, for Re < 1,000, that the required value
of 1.1, to achieve a yiven accuracy, increased monotonically with Re. Numerical
examples are given in Section V.

The second is a least squares method. The "normal" equations for an are
obtained by minimizin the error

g(an) , (r)12 + 'E2(r) E2 + JE3(r) 2 re dr . (3.15)n 2 32
0

Exponents e = 0,1 gave essentially the same results. A measure of the error,
E, in an is given by

U =2

E2 9/ jl(r), r dr. (3.16)

0

The coefficients of the linear equations for Cn are given in the Appendix.

14



IV. PRESSURE AND MOMENT COEFFICIENTS

The velocity, pressure and moment exerted by the liquid on the container
are quantities of physical interest calculated by the spatial eigenvalue
method. The last is of direct use in the application of the theory to the
study of projectile stability; e.g., it can be used to calculate yaw growth
rate. 4, 13 Measurements of pressure have been made mostly on the endwall and
the sidewall, an exception being those on the axis of the cylinder by
Aldridge. 14 Only the endwall case is considered. The pressure transducer
measurements are processed 1 5 to produce amplitude and phase. This amplitude
is compared with calculations in the next section. Comparisons are made using
only non-dimensional pressure and moment coefficients. In Reference 16
dimensional quantities are used; these are converted to dimensionless forms
for present purposes. Derivations of pressure and moment coefficients are
outlined; details can be found in References 4 and 13.

The pressure calculated from the Navier-Stokes equations, PNS, is

PNS = 1/2 r2 - K p (4.1)

in the linear theory. However, since the measurement is made in a reference

frame fixed to the cylinder, with coordinates r,e,x , the coordinates used in
the analysis, r,e,x, must be transformed to this frame. For example,

1/2 r = 112 r - Ko r x cos (ft-e) + 0 (K ) . (4.2)

The disturbance pressure, Ap, is the pressure not including the contribution
from solid body rotation. At points fixed on the surface of the cylinder

1 _/2 r2  Kp* 12(r,e,x,t) 1/2 r *

Using p* (r,',x,t) p* (r,e,x,t) + O(Ko ), (1.1) and (4.2),
I

Ap -K [-P1 sin (ft-e) + (eR + rx) cos (ft-e)] (4.3)

where sub R and I denote real and imaginary parts of 2, respectively, and
the rx factor in (4.2) can be replaced by rx without chanying the order of
approximation; (2.6d) relates pR' l to , P1 and the latter are obtained

from (2.9d). Note that + rx = PR + f2rx and p1 = PI" The pressure

coefficient, Cp, is defined as the amplitude of Ap/K o, i.e.,

I

Cp +(R 
+  rx)2 2 1/2 (4.4)

15
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Certain limiting forms of C can be derived. Firstly, consider f * 0.

From (2.7c), the boundary condition is

w = fw (r) , x = A

so that the an from (3.14) and (u,v,w,p) in (2.9) are 0(f). Therefore,

(u,v,w,p) = f (u°,v°,w°,p°) + 0(f2)

"S.

where (u , v , w , p ) expand as in (2.9). The eigenvalues are evaluated for
f = 0 and the endwall boundary condition is

W = w (r) , x = , S..

which leads to .4

I 0 2 112 f2):

= Ifl I an pn + 0(f . (4.5)

".4

For Re = 8.8, A = 3.148 and r 0.667, (4.5) gives

C = .82 IfI + o(f2).

For larye values of f, the endwall boundary condition becomes '%

w = -2ifr + 0 ( e" If l  , x = A

for r >> If1- 11 2 ; this is obtained by using the asy1ptotic expansions for
J1 (xr) and J1(x) in (2.7c). Thus, the flow has a boundary layer structure of

thickness 0 (if! 1/2 ) at r = 0 which implies that c (see Section III) must

be chosen such that E << IfI1 /2 .  From (3.14c) and (2.9d) p - jfj and a first ,

approximation, neglecting the 0 (If,"1/2) boundary layer, gives

,C..2
C f2 r A + 0 (Ifl) (4.6)P

on the endwall.

16
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If f = 1, the perturbation is zero which is clear from (2.6), (2.7), and
(2.8). Therefore, (4.4) gives

Cp =rx , f=I, (4.7)

a linear variation on the endwall and sidewall. Since (4.7) is exact, it can
be used in error analyses of the numerical results.

For r << 1, it can be shown that, on the endwall, for all Re and f

Cp = O(r). (4.8)

The moment exerted by the liquid on the container can be calculated from
the rate of chanye of angular momentum 3' 6 or from the integration over the
cylinder surface of the pressure and shear forces.4 ,13,16' ]1 The latter is
outlined. The three components of the moment are evaluated in an aeroballis-
tic coordinate system. The axial or roll component is zero to O(Ko); the

transverse components are 0 (Ko) and, to that order, are the same in the

aeroballistic and inertial frames. The transverse components can be separated
into the overturning or side moment and the in-plane moment which acts to
change the coning rate. 17 The side moment is important for projectile
stability, as shown by Murphy,1 7 and is the only component considered. The
following definitions 1 7 are used: nondimensional side moment coefficient

CLS M = side moment/21Tp a4 c (-r + 2)2 f Ko; CLSM is expressed as the sum of
the four contributions: the pressure on the sidewall, press ire on the
endwalls, shear force on the sidewall and shear force on the endwalls. These
are given by

A

(fA) ' x I (1,x) dxP
0

I

-(fA)- 1 - (r,A) r2 dr

A

-(fARe) -(V -w)a + 1 f dx

r=1

1

-(f Re)- Real I- f + a (v iu)/ax r dr (4. 9a ,b ,c ,d)

0 x=A

17
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respectively.* For the reasons given in deriving (4.7) CLSM 0 for f : 1.

The derivative in (4.9d) will introduce a factor kn in the series used to

calculate (4.9d) which, it was conjectured, would adversely affect conver-
gence. By integrating (2.8a,b) over x and r, an alternative form was derived
which did not have this factor. It was found, numerically, that the two forms
agree to 2% or less for IknI 100.

If the pressure and moment coefficients are defined using the spin, Q, 'V

and non-dimensional coning frequency, T', relative to S', and denoted by Cp

and CLS', they are related to Cp and CLSM by Cp = Cp' (1 - f cos Ko) 2 and . p

CLSM = CLSM' (1 - f cos Ko).

V. RESULTS

A sampling of results obtained by the spatial eigenvalue method is
given. Some of these are used to discuss the numerical process but most of
the results presented either have intrinsic interest or are used to compare
with finite difference calculations or experiment. A standard set of the
basic parameters was chosen to facilitate comparison of several of the
figures; these are Re = 10, f = 0. 1, A = 3.0. Since the original motivation
for this work was the calculation of Cp and CLSM for "small" Re, this range is

emphasized here. For "large" Re, the theories of References 4, and 13 are V
available.

Instead of an analysis of the numerical processes used in the spatial
eigenvalue method, a number of empirical studies were made, and some con-
clusions based on these are presented. Recall that two methods were used for .

determining the eigenvalues, viz., orthonormalizationlO'll and finite
difference, 12 and that two methods were used to determine the coefficients,

a viz., collocation and least squares. As expected, results were not very

sensitive to the choice of method for computing k ,n .  Extensive calculations

were made with a program combining orthonormalization with least squares and
another combining the finite difference technique with collocation; these are
denoted by LS and COL, respectively.

Of the physical parameters, the calculation is more sensitive to Re and f
than A; recall that the k are independent of A. Of the numerical parame-

ters, obviously the number of eigenvalues, N = 3M, is most important; in COL
the number of collocation points is M. In all calculations using collocation,
the collocation points were equally spaced (exactly or to within ±1 of the
point number). The number of points required in the numerical integration of
the differential equations for the eigenfunctions is directly related to N. A
number of points equal to 7M was found to be adequate although a larger number
was usually employed; recall that the largest number of zeroes of the
eigenfunctions is M. There are several other numerical parameters having to
do with the number of terms in series, convergence of iteration processes,
etc, which will not be discussed.

in (4., the corie-e expressions for shear stress are used whereas approxi- r.:"
ratons 4or ,ar,'e Re are introduced in Reference 13.
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The first illustration is for the calculation of CLSM by LS and COL for

the case Re = 21.5, f = .0621, A 1.042 and 3 < N < 42, shown in Figure 4;

there is a break in the ordinate scale to accommodate the COL point for N = 9.
The LS results are less sensitive to decreasing N than the COL results. The
LS value for N = 6 is within 1.7% of the result for large N and required only
6 seconds of CPU time on the VAX 8600. The LS and COL results are essentially
the same for N > 12. A comparison with an experimental result is shown later

for the same Re, f, and A used here.

The calculated values of Cp (.667) vs N, using LS and COL, are shown in

Figures 5 and 6 for Re = 100 and 1,000, respectively, and f = 0.1, A = 3. In
Figure 5 the differences in Cp for N > 36 are negligible. At N = 12, the LS

value is 0.13% below and the COL value is .41% below the result for N = 72.
In Ficure 6 the approach to a limiting value for large N is not as clear. The
LS and COL results differ by 1% at most for N > 48. The limiting value is

approximately Cp (.667) = .205. At N = 12 the COL value is 2.4% below the

limiting value, and the LS value, offscale, is 7.8% below the limiting value.

In all the cases discussed hereafter, N was chosen large enough to give
limiting values of Cp and CLSM in the sense used above, and the values

obtained using LS and COL agreed to at least three significant figures with
the exception of the CLSM vs A results for Re = 1000. When quoting results

from finite difference methods, for comparisons, K. must be specified; results

from the linear theory used here are independent of Ko , of course.

The variation of C with r, on the endwall, is shown in Figure 7 for Re =

1.0, f = 0.1, and A = 3.0. In addition, results 7 from Strikwerda's method are
presented for Ko = 20. The former is essentially linear with r for approxi-

mately 0 < r < 0.2 but the latter is not. From (4.8), Cp O(r). This

comparison and some others indicate a loss in accuracy of Strikwerda's method
for Re < 1.

In Figure 8, the spatial eigenvalue calculation of Cp on the endwall vs f

is presented for Re = 10 and A = 3.0 at r = 0.5 and 1.0. Recall that

C = 0(If1 ) for f + 0, from (4.5), but the dependence is not linear over

0.1 < f < 1.0. Values of Cp from the asymptotic approximation (4.6) are also
given. At f = 0.8 and r = 1, the estimate (4.6) is 8% lower than the calcu-
lation; at f = 1.1 (not shown) and r = 1, it is 3% higher.

The variation of C on the endwall, x = A, at r = .667, over the range

I < Re < 1000 and for f = 0.1, A 3 is shown in Figure 9. Over that range,

Cp varies by a factor of 2.3.
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The variation of C at x A, r .667, over the range 0.5 < A < 15 and
p "

for Re = 10, f = 0.1 is shown in Figure 10. In projectile application usually
1 < A < 5; over that range Cp increases by a factor of 1.3.

A comparison of calculated pressure coefficient vs f with some experi-
mental measurements of Hepner, Kendall, Davis, and Tenly 15 is shown in Figure
11 for Re = 3.1 and A = 3.148. The pressure transducer was located at r
0.667 and the coning angle was Ko = 20. The radius of the cylinder was 3.18

cm; the fluid had a dtnsity of 0.969 gm/cm3 and a kinematic viscosity of
60,000 cs. According to Nusca and D'Amico18 the measured Cp and f are in the
inertial reference frame, S. The data include estimates of errors in Cp, as

presented by Hepner et al. 15  For almost all points, the calculated Cp is less

than the measured Cp; for the larger f it is outside the error bar. The

reason for the bias in this comparison is not- known.

The remainder of this section is devoted to presentation of results of
calculating CLSt1 and some comparisons. There are more publications that

report calculation of CLSM than Cp, starting with the first application of a
finite difference method to this problem by Vaughn, Oberkampf, and Wolfe. 16  "."
However, no attempt will be made to be complete in the comparisons, but rather
representati ve.

For 0 < Re < 1.0, f = 0.1 and A = 3.0, the variation of CLSM with Re is

linear according to results in Figure 12; the maximum discrepancy in CLSM is

0.3 x 10-4 at Re = 1.0.

In Figure 13 CLSM vs Re is shown for f = 0.1 and A = 3.0. Over the

range 1 < Re < 100, there is a barely discernable maximum at Re = 50,

approximately. For Re > 100, CLSM decreases. "A1
The variation of CLSM with f is given in Figure 14 over the range of N

0 < f < 1.1 for the spatial eigenvalue calculations and .05 < f < 0.9 for the
Strikwerda results, Ko = 20, both for Re = 10.0 and A = 3.0. In practice f <

1.0 but note that CLSM < 0 for f = 1.1. The two sets of results are essen-

tially the same, which tends to support the validity of each. The maximum
difference is .0025 at f = .6. The existence of a maximum in this curve is of
some interest. When the first measurements of CLSM, from yaw growth rate,

were made at "small" Re, a linear variation of CLSM with f was found, but only

over the range 0 < f < 0.15. It was speculated that for "small" Re a
Stewartson resonance1 does not occur. Figure 14 shows that resonance does
occur at Re = 10, albeit, highly damped. Of course, Stewartson's theory was
formulated for an inviscid fluid and its extensions apply to "large" Re so
that quantitative results from these could not be expected to apply at Re
10.
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A comparison of calculated side moment coefficient vs f with some experi-
mental measurements of D'Amico 1 9 is shown in Figure 15 for Re = 21.5 and
A = 1.042. The experimental results for K, - 20 were deduced from yaw growth

rate measurements on a gyroscope; according to Nusca and D'Amico, 18 the CLSM

and f are in S. The calculations show that CLSM is linear for 0 < f < .04,

Ip approximately. The experimental results for the two larger values of f lie on

the calculated CLS M vs f line, essentially. The reason for the discrepancy at

I = 0.045 is not known although it is pointed out in Referenoe 19 that, as

CLS14 decreases, the error in its measurement increases; no error bounds were

presented.

A similar comparison is shown in Figure 16 For Re = 133 and A = 1.486.
The experimental data1 9 is for Ko < 50; CLSM was deduced from yaw growth rate

data. The calculations show that CLSM is linear for 0 < f < .03, approxi-

mately. The gyroscope data are uniformly below the calculated results; no
error bounds were presented. If extrapolated, the trend of the data implies
CLSM = 0 at f = 0.03, approximately, and negative values for f < 0.03. In all

cases computed thus far, CLSM is positive for 0 < f < 1.

Next, CLSM vs A is presenLeo in Figure 17 for Re = 10 and f = 0.1. The

variation is rapid in the neighborhood of A = 1 but for 3 < A < 15, CLSM in-

creases by only 3%. The results in Figure 17 can be used to assess the assump-
tion of infinite aspect ratio in Herbert's theory. 3  For Re = 10 and f = 0.1,
his theory gives CLSM = -0.114 which is quite different from results in Figure

17. Since the contributions of Eqs. (4.9a,b,d,) to CLSM are identically zero

according to his theory, another point of view is to compare his result with
that obtained from only Eq. (4.9c), using the present results; this is -0.184
for A = 15, Re = 10, and f = 0.1. The presence of the endwalls appears to
have a significant effect on the contribution to CLSM of the shear force on
the sidewall, even for A = 15.

The variation of CLSM with A is quite different for Re = 1000, f = 0.1 as

shown in Figure 18. The calculations using LS and COL both produce resunant
response curves but the computed values of CLSM differ more than in th

comparisons shown in Fijures 4, 5, and 6; near the maximum of CLSM, which

occurs at A = 1.12 for COL, they differ by 11%. For Re = 1000, the limiting
values of CLSj4 are not determined as accurately as for smaller Re or for Cp;

the numerical process responsible for that is not understood. The only
guidance as to which of the calculations is the more accurate is provided by
the third set of results in Figure 18, labeled asymptotic, computed using the
theory of References 4 and 13 which is asymptotic for Re +. . The comparisons
of results fruio tnat theory with measurements of yaw growth rate given in
Reference 13 indicate that in the neighborhood of Re = 1000, f = 0.1 and A = I
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this asymptotic theory is reliable, but the conclusion is not definitive. The
differences between the COL and asymptotic results are less than the corres-
ponding LS differences but the situation is too tentative to draw conclusions
concerning the accuracy of either method. Both LS and COL results should
tend, for increasing Re, to those of the asymptotic theory for decreasing
Re. Qualitatively, this tendency is illustrated in Figure 18 for Re = 1000.

Despite the difference just discussed, the existence of the resonant
response, wherein the cavity, i.e., liquid-filled cylinder, is tuned by aspect
ratio, is shown in Figure 18. A resonant response is also obtained in the Cp

vs A results; the maximum C is at A = 1.12. Usually, resonant response tuned

by f is investigated in this problem; but the possibility of tuning by A is
not surprising considering oscillatory systems, in general. For fixed A = 1
1.12 and varying f calculations by the asymptotic method give, in addition to
the maximum of CLSM at f = 0.1, a secondary peak at f = 0.5.

An attempt was made to compare the moment coefficients calculated by this
linear theory to those obtained from the large scale numerical metnods in
which linearity in Ko is not assumed. In addition to the finite difference

method of Reference 6 a finite element method was recently applied to this
problem by Rosenblat2 from which a limited number of results is available.
Results for moment coefficient, with Ko = 200, are presented in Table I from

these methods and the spatial eigenvalue method. The test was frustrated
because the results using the methods of References 6 and 20 differ signifi-
cantly, as seen in Table 1. Therefore, the effects of departure from linear-
ity at Ko = 200 cannot be judged. In Table 1 Reynolds number, frequency and

moment coefficient are given in the aeroballistic reference frame, S', used in
References 6 and 20, and denoted by Re', T', and CLSM'; the transformations -

relating these to the corresponding quantities in S were given earlier. The
comparisons are made in S' because fewer calculations were required.

TABLE 1. Comparison of CLSM' by the Spatial Eigenvalue,

Finite Difference and Finite Element Methods;
T' = 0.1670, A = 4.29, Ko = 200.

J.

CLSM'

Re' Ref. 6,7 Reference 20 Spatial E.V.

5.90 0.03172 0.03082 0.03104
11.42 0.4732 0.04378 0.04785

The differences between the spatial eigenvalue results and those of Reference
20 are 0.7% and 10% for Re' = 5.90 and 11.42, respectively. Between the
spatial eigenvalue results and those from Reference 7, the corresponding
differences are 2.2% and 1.1% which are no greater than the differences
between these methods for Ko = 20. Although a wider range of parameters must

be investigated to arrive at a definitive conclusion, it appears that the
nonlinear effect is small up to KO = 200.
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VI. DISCUSSION

It has been demonstrated that the linearized Navier-Stokes equations with
boundary conditions appropriate to a spinning, coning cylinder can be solved
by eigenfunction expansions over a wide range of the governing nondimensional
parameters: Re, f, and A. By expanding the complete solution in powers of a
small parameter related to coning angle, the nonlinear problem can also be
solved by eigenfunction expansions. The limitations of the linear theory could
be judged by comparison with finite difference or finite element methods, but
this is not yet feasible.

The method presented here is in the class of spectral methods. Another
spectral method using Chebyshev polynominals has been developed by Herbert; 21

results from his method are not yet available for comparison. Many different
solutions for the fluid motion in a spinning, coning cylinder are now availa-
ble. Judgments on the relative merits of these should be made. To a limited S
extent, this was done in this report.

Certain deficiencies in the spatial eigenvalue method, for Re > 500, were
noted. Ideas for removing these are being exploited.
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APPENDIX. NORMAL EQUATIONS FOR (3.15) ,

The coefficients, an, which minimize g(an) in (3.15) are found as the

solution of the linear system

3M a

Z jn an 5j'
n=1

where j = 1,...,3M, o(r) is given by (2.6e), and sj and Sjn are

1

s. a(r) cot k.A w FF dr

S jn [u n uj+ v n vj cot k nA cot k A w n  ]dr..,
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